Toxic Effects of Arsenic on Four Freshwater Aquatic Species and Its Transformation Metabolism in Crucian Carp (Carassius auratus).

阅读:4
作者:Tang Shizhan, Gao Lei, Qin Dongli, Wang Haitao, Huang Li, Wu Song, Bai Shuyan, Du Ningning, Sun Yanchun, Wang Peng, Chen Zhongxiang
Inorganic arsenic is a well-known carcinogen that is much more toxic than its organic counterpart. While much is known about the accumulation and transformation of arsenic in marine organisms, little is known regarding these processes in freshwater aquatic species. In this study, the acute toxicity and toxicological effects of inorganic arsenic on four freshwater organisms (Cyprinus carpio, Misgurnus anguillicaudatus, Pseudorasbora parva, Eriocheir sinensis) commonly found in rice-fish farming systems were investigated. The organisms exhibited different levels of sensitivity to inorganic arsenic, with crustaceans being more sensitive than fish. Fish were found to be more tolerant to As(V) than As(III). The study also investigated the accumulation, transformation, and release of inorganic arsenic in crucian carp, an omnivorous species with high environmental tolerance. The fish accumulated As(III) rapidly in various tissues, and were able to transport it to other tissues through gills, intestines, and skin. The accumulated As(III) was converted into less toxic forms, such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), via methylation. The fish also converted As(III) into arsenate (AsV) via enzymatic and oxidative reactions. After the transferal to clean water, the forms of arsenic in the various tissues decreased rapidly, but the rates of excretion of the four forms of arsenic were not the same among the different tissues. Our results suggest that crucian carp can reduce the environmental toxicity of As(III) at certain concentrations by transforming it into less toxic forms within their bodies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。