Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China.

阅读:4
作者:Wang Huwen, Wang Zezhou, Dong Yinqiao, Chang Ruijie, Xu Chen, Yu Xiaoyue, Zhang Shuxian, Tsamlag Lhakpa, Shang Meili, Huang Jinyan, Wang Ying, Xu Gang, Shen Tian, Zhang Xinxin, Cai Yong
An outbreak of clusters of viral pneumonia due to a novel coronavirus (2019-nCoV/SARS-CoV-2) happened in Wuhan, Hubei Province in China in December 2019. Since the outbreak, several groups reported estimated R(0) of Coronavirus Disease 2019 (COVID-19) and generated valuable prediction for the early phase of this outbreak. After implementation of strict prevention and control measures in China, new estimation is needed. An infectious disease dynamics SEIR (Susceptible, Exposed, Infectious, and Removed) model was applied to estimate the epidemic trend in Wuhan, China under two assumptions of R(t) . In the first assumption, R(t) was assumed to maintain over 1. The estimated number of infections would continue to increase throughout February without any indication of dropping with R(t)  = 1.9, 2.6, or 3.1. The number of infections would reach 11,044, 70,258, and 227,989, respectively, by 29 February 2020. In the second assumption, R(t) was assumed to gradually decrease at different phases from high level of transmission (R(t)  = 3.1, 2.6, and 1.9) to below 1 (R(t)  = 0.9 or 0.5) owing to increasingly implemented public health intervention. Several phases were divided by the dates when various levels of prevention and control measures were taken in effect in Wuhan. The estimated number of infections would reach the peak in late February, which is 58,077-84,520 or 55,869-81,393. Whether or not the peak of the number of infections would occur in February 2020 may be an important index for evaluating the sufficiency of the current measures taken in China. Regardless of the occurrence of the peak, the currently strict measures in Wuhan should be continuously implemented and necessary strict public health measures should be applied in other locations in China with high number of COVID-19 cases, in order to reduce R(t) to an ideal level and control the infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。