MultiScale-CNN-4mCPred: a multi-scale CNN and adaptive embedding-based method for mouse genome DNA N4-methylcytosine prediction.

阅读:3
作者:Zheng Peijie, Zhang Guiyang, Liu Yuewu, Huang Guohua
N4-methylcytosine (4mC) is an important epigenetic mechanism, which regulates many cellular processes such as cell differentiation and gene expression. The knowledge about the 4mC sites is a key foundation to exploring its roles. Due to the limitation of techniques, precise detection of 4mC is still a challenging task. In this paper, we presented a multi-scale convolution neural network (CNN) and adaptive embedding-based computational method for predicting 4mC sites in mouse genome, which was referred to as MultiScale-CNN-4mCPred. The MultiScale-CNN-4mCPred used adaptive embedding to encode nucleotides, and then utilized multi-scale CNNs as well as long short-term memory to extract more in-depth local properties and contextual semantics in the sequences. The MultiScale-CNN-4mCPred is an end-to-end learning method, which requires no sophisticated feature design. The MultiScale-CNN-4mCPred reached an accuracy of 81.66% in the 10-fold cross-validation, and an accuracy of 84.69% in the independent test, outperforming state-of-the-art methods. We implemented the proposed method into a user-friendly web application which is freely available at: http://www.biolscience.cn/MultiScale-CNN-4mCPred/ .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。