Poisson regression is a very commonly used technique for modeling the count data in applied sciences, in which the model parameters are usually estimated by the maximum likelihood method. However, the presence of multicollinearity inflates the variance of maximum likelihood (ML) estimator and the estimated parameters give unstable results. In this article, a new linearized ridge Poisson estimator is introduced to deal with the problem of multicollinearity. Based on the asymptotic properties of ML estimator, the bias, covariance and mean squared error of the proposed estimator are obtained and the optimal choice of shrinkage parameter is derived. The performance of the existing estimators and proposed estimator is evaluated through Monte Carlo simulations and two real data applications. The results clearly reveal that the proposed estimator outperforms the existing estimators in the mean squared error sense.
A new linearized ridge Poisson estimator in the presence of multicollinearity.
阅读:4
作者:Jadhav, Nileshkumar, H
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2021 Feb 16; 49(8):2016-2034 |
| doi: | 10.1080/02664763.2021.1887103 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
