Sublethal chlorantraniliprole exposure induces autophagy and apoptosis through disrupting calcium homeostasis in the silkworm Bombyx mori

亚致死氯虫苯甲酰胺暴露通过破坏家蚕钙稳态诱导自噬和细胞凋亡

阅读:8
作者:WenTao Ye, MinLi Dai, DanDan Bian, QingYu Zhu, Xin Li, HaiNa Sun, FanChi Li, Jing Wei, Bing Li

Abstract

The intensive application of chlorantraniliprole (CAP) leaves residues in the environment, posing a potential threat to non-target organisms. In the present study, we investigated the adverse effects of sublethal CAP exposure on Bombyx mori. Sublethal CAP (0.02 mg/L) was shown to induce the release of intracellular Ca2+ in BmN cells. Meanwhile, Ca2+ -dependent genes were induced in the midgut at 72 h after CAP (0.01 mg/L) exposure, and damaged mitochondria, autophagosomes, nuclear membrane rupture and condensed chromatin were observed. Moreover, the key genes in the oxidative phosphorylation pathway were significantly down-regulated. The transcript levels of autophagy-related genes ATG6 and ATG8 were significantly up-regulated, and the protein levels of LC3-II and ATG7 were significantly increased by 3.72- and 3.33-fold, respectively. Additionally, the transcript levels of the upstream genes in the apoptosis pathway (calpain and Apaf-1) were significantly up-regulated, the protein levels of the downstream gene caspase 3 and its cleaved form were significantly up-regulated by 1.97- and 4.55-fold, respectively, consistent with the elevated caspase 3 activity at 72 h. Collectively, these findings demonstrate that intracellular Ca2+ release induced by sublethal CAP inhibits oxidative phosphorylation pathway, which causes mitochondrial dysfunction, leading to autophagy and apoptosis in the midgut of B. mori.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。