Sublethal chlorantraniliprole exposure induces autophagy and apoptosis through disrupting calcium homeostasis in the silkworm Bombyx mori

亚致死氯虫苯甲酰胺暴露通过破坏家蚕钙稳态诱导自噬和细胞凋亡

阅读:19
作者:WenTao Ye, MinLi Dai, DanDan Bian, QingYu Zhu, Xin Li, HaiNa Sun, FanChi Li, Jing Wei, Bing Li

Abstract

The intensive application of chlorantraniliprole (CAP) leaves residues in the environment, posing a potential threat to non-target organisms. In the present study, we investigated the adverse effects of sublethal CAP exposure on Bombyx mori. Sublethal CAP (0.02 mg/L) was shown to induce the release of intracellular Ca2+ in BmN cells. Meanwhile, Ca2+ -dependent genes were induced in the midgut at 72 h after CAP (0.01 mg/L) exposure, and damaged mitochondria, autophagosomes, nuclear membrane rupture and condensed chromatin were observed. Moreover, the key genes in the oxidative phosphorylation pathway were significantly down-regulated. The transcript levels of autophagy-related genes ATG6 and ATG8 were significantly up-regulated, and the protein levels of LC3-II and ATG7 were significantly increased by 3.72- and 3.33-fold, respectively. Additionally, the transcript levels of the upstream genes in the apoptosis pathway (calpain and Apaf-1) were significantly up-regulated, the protein levels of the downstream gene caspase 3 and its cleaved form were significantly up-regulated by 1.97- and 4.55-fold, respectively, consistent with the elevated caspase 3 activity at 72 h. Collectively, these findings demonstrate that intracellular Ca2+ release induced by sublethal CAP inhibits oxidative phosphorylation pathway, which causes mitochondrial dysfunction, leading to autophagy and apoptosis in the midgut of B. mori.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。