Electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers possess desirable mechanical and piezoelectric properties, making them promising candidates for smart textiles if they can be assembled into continuous yarns. This study presents a manufacturing approach that enables the production of electrospun PVDF-HFP nanofiber yarns using an automated parallel track system and an adjustable roll-to-roll collector. Results show that this approach has potential for PVDF yarn manufacturing on a commercial scale. Electrospun yarns have previously been fabricated with self-bundling methods, but current technologies are limited by production limitations such as the lack of tight control over assembly parameters and the absence of a postdrawing process. Postdrawing was applied here to individual fibers before yarn spinning to enhance fiber strength by over two times and yarn strength by 39%. The piezoelectrical performance of yarns was enhanced by up to 45% with postdrawing. Continuous PVDF-HFP yarns with specific strength approaching 50,000 N m/kg and a relative β phase content of 97% are promising candidates for piezoelectric nanofiber-based smart textiles, which can be integrated into various wearable devices and intelligent garments.
A Continuous Manufacturing Approach for Aligned PVDF Nanofiber Yarns with Enhanced Mechanical and Piezoelectric Properties.
阅读:4
作者:Enuka Adaugo, Keblawi Mohamad, Sedar Emmet, Beachley Vince
| 期刊: | ACS Applied Polymer Materials | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 7(9):5429-5436 |
| doi: | 10.1021/acsapm.5c00069 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
