Electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers possess desirable mechanical and piezoelectric properties, making them promising candidates for smart textiles if they can be assembled into continuous yarns. This study presents a manufacturing approach that enables the production of electrospun PVDF-HFP nanofiber yarns using an automated parallel track system and an adjustable roll-to-roll collector. Results show that this approach has potential for PVDF yarn manufacturing on a commercial scale. Electrospun yarns have previously been fabricated with self-bundling methods, but current technologies are limited by production limitations such as the lack of tight control over assembly parameters and the absence of a postdrawing process. Postdrawing was applied here to individual fibers before yarn spinning to enhance fiber strength by over two times and yarn strength by 39%. The piezoelectrical performance of yarns was enhanced by up to 45% with postdrawing. Continuous PVDF-HFP yarns with specific strength approaching 50,000 N m/kg and a relative β phase content of 97% are promising candidates for piezoelectric nanofiber-based smart textiles, which can be integrated into various wearable devices and intelligent garments.
A Continuous Manufacturing Approach for Aligned PVDF Nanofiber Yarns with Enhanced Mechanical and Piezoelectric Properties.
阅读:11
作者:Enuka Adaugo, Keblawi Mohamad, Sedar Emmet, Beachley Vince
| 期刊: | ACS Applied Polymer Materials | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 7(9):5429-5436 |
| doi: | 10.1021/acsapm.5c00069 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
