Phosphorylation, a reversible and widespread post-translational modification of proteins, is essential for numerous cellular processes. However, due to technical limitations, large-scale detection of phosphorylation sites, especially those infected by SARS-CoV-2, remains a challenging task. To address this gap, we propose a method called GBMPhos, a novel method that combines convolutional neural networks (CNNs) for extracting local features, gating mechanisms to selectively focus on relevant information, and a bi-directional gated recurrent unit (Bi-GRU) to capture long-range dependencies within protein sequences. GBMPhos leverages a comprehensive set of features, including sequence encoding, physicochemical properties, and structural information, to provide an in-depth analysis of phosphorylation sites. We conducted an extensive comparison of GBMPhos with traditional machine learning algorithms and state-of-the-art methods. Experimental results demonstrate the superiority of GBMPhos over existing methods. The visualization analysis further highlights its effectiveness and efficiency. Additionally, we have established a free web server platform to help researchers explore phosphorylation in SARS-CoV-2 infections. The source code of GBMPhos is publicly available on GitHub.
GBMPhos: A Gating Mechanism and Bi-GRU-Based Method for Identifying Phosphorylation Sites of SARS-CoV-2 Infection.
阅读:5
作者:Huang Guohua, Xiao Runjuan, Chen Weihong, Dai Qi
| 期刊: | Biology-Basel | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Oct 6; 13(10):798 |
| doi: | 10.3390/biology13100798 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
