Topological elastic liquid diode.

阅读:3
作者:Zhang Yurong, Li Lijun, Li Gang, Lin Zhen, Wang Ruteng, Chen Daobing, Lei Yifeng, Tan Di, Wang Zuankai, Zhao Yan, Xue Longjian
On-demand liquid transportation is fundamentally important and holds great potential in various fields, such as water collection and biological engineering. However, it remains highly challenging to in situ manipulate the direction of liquid flow on a lyophilic surface. Here, a topological elastic liquid diode (TELD) that could manipulate the flow direction is developed by combining the Araucaria leaf inspired ratchet array and the elasticity of silicon rubber. The flow pathway on the lyophilic TELD can be conveniently managed by regulating the competition forces along orthogonal directions at the liquid front, which is instantly realized by adjusting the mechanical strain in TELD (mode 1 regulation) or inserting extra forces at the liquid front (mode 2 regulation). Furthermore, TELD can serve as a logic gate, stress valve, microfluidic reactor, and fog collector. Thus, the work here establishes strategies for in situ and instant manipulation of liquid flow on a lyophilic surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。