A global survey has revealed that genetic syndromes affect approximately 8% of the population, but most genetic diagnoses are typically made after birth. Facial deformities are commonly associated with chromosomal disorders. Prenatal diagnosis through ultrasound imaging is vital for identifying abnormal fetal facial features. However, this approach faces challenges such as inconsistent diagnostic criteria and limited coverage. To address this gap, we have developed FGDS, a three-stage model that utilizes fetal ultrasound images to detect genetic disorders. Our model was trained on a dataset of 2554 images. Specifically, FGDS employs object detection technology to extract key regions and integrates disease information from each region through ensemble learning. Experimental results demonstrate that FGDS accurately recognizes the anatomical structure of the fetal face, achieving an average precision of 0.988 across all classes. In the internal test set, FGDS achieves a sensitivity of 0.753 and a specificity of 0.889. Moreover, in the external test set, FGDS outperforms mainstream deep learning models with a sensitivity of 0.768 and a specificity of 0.837. This study highlights the potential of our proposed three-stage ensemble learning model for screening fetal genetic disorders. It showcases the model's ability to enhance detection rates in clinical practice and alleviate the burden on medical professionals.
An Innovative Three-Stage Model for Prenatal Genetic Disorder Detection Based on Region-of-Interest in Fetal Ultrasound.
阅读:3
作者:Tang Jiajie, Han Jin, Jiang Yuxuan, Xue Jiaxin, Zhou Hang, Hu Lianting, Chen Caiyuan, Lu Long
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Jul 23; 10(7):873 |
| doi: | 10.3390/bioengineering10070873 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
