Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans.

阅读:6
作者:Wei Wei, Zhu Wenjun, Cheng Jiasen, Xie Jiatao, Jiang Daohong, Li Guoqing, Chen Weidong, Fu Yanping
The NADPH oxidase complex of a sclerotial mycoparasite Coniothyrium minitans, an important biocontrol agent against crop diseases caused by Sclerotinia sclerotiorum, was identified and its functions involved in conidiation and mycoparasitism were studied. Gene knock-out and complementary experiments indicated that CmNox1, but not CmNox2, is necessary for conidiation and parasitism, and its expression could be significantly induced by its host fungus. CmNox1 is regulated by CmRac1-CmNoxR and interacts with CmSlt2, a homolog of Saccharomyces cerevisiae Slt2 encoding cell wall integrity-related MAP kinase. In ΔCmNox1, CmSlt2-GFP fusion protein lost the ability to localize to the cell nucleus accurately. The defect of conidiation in ΔCmRac1 could be partially restored by over-expressing CmSlt2, indicating that CmSlt2 was a downstream regulatory factor of CmNox1 and was involved in conidiation and parasitism. The expressions of mycoparasitism-related genes CmPks1, Cmg1 and CH1 were suppressed in the knock-out mutants of the genes in CmNox1-CmSlt2 signal pathway when cultivated either on PDA. Therefore, our study infers that CmRac1-CmNoxR regulates CmNox1-CmSlt2 pathway in regulating conidiation and pathogenicity of C. minitans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。