Versatile optical manipulation of trions, dark excitons and biexcitons through contrasting exciton-photon coupling.

阅读:2
作者:Li Zhe, Zhang Xin-Yuan, Ma Rundong, Fu Tong, Zeng Yan, Hu Chong, Cheng Yufeng, Wang Cheng, Wang Yun, Feng Yuhua, Taniguchi Takashi, Watanabe Kenji, Wang Ti, Liu Xiaoze, Xu Hongxing
Various exciton species in transition metal dichalcogenides (TMDs), such as neutral excitons, trions (charged excitons), dark excitons, and biexcitons, have been individually discovered with distinct light-matter interactions. In terms of valley-spin locked band structures and electron-hole configurations, these exciton species demonstrate flexible control of emission light with degrees of freedom (DOFs) such as intensity, polarization, frequency, and dynamics. However, it remains elusive to fully manipulate different exciton species on demand for practical photonic applications. Here, we investigate the contrasting light-matter interactions to control multiple DOFs of emission light in a hybrid monolayer WSe(2)-Ag nanowire (NW) structure by taking advantage of various exciton species. These excitons, including trions, dark excitons, and biexcitons, are found to couple independently with propagating surface plasmon polaritons (SPPs) of Ag NW in quite different ways, thanks to the orientations of transition dipoles. Consistent with the simulations, the dark excitons and dark trions show extremely high coupling efficiency with SPPs, while the trions demonstrate directional chiral-coupling features. This study presents a crucial step towards the ultimate goal of exploiting the comprehensive spectrum of TMD excitons for optical information processing and quantum optics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。