BACKGROUND: Making clear what kinds of metabolic pathways a drug compound involves in can help researchers understand how the drug is absorbed, distributed, metabolized, and excreted. The characteristics of a compound such as structure, composition and so on directly determine the metabolic pathways it participates in. METHODS: We developed a novel hybrid framework based on the graph attention network (GAT) to predict the metabolic pathway classes that a compound involves in, named HFGAT, by making use of its global and local characteristics. The framework mainly consists of a two-branch feature extracting layer and a fully connected (FC) layer. In the two-branch feature extracting layer, one branch is responsible to extract global features of the compound; and the other branch introduces a GAT consisting of two graph attention layers to extract local structural features of the compound. Both the global and the local features of the compound are then integrated into the FC layer which outputs the predicted result of metabolic pathway categories that the compound belongs to. RESULTS: We compared the multi-class classification performance of HFGAT with six other representative methods, including five classic machine learning methods and one graph convolutional network (GCN) based deep learning method, on the benchmark dataset containing 6999 compounds belonging to 11 pathway categories. The results showed that the deep learning-based methods (HFGAT, GCN-based method) outperformed the traditional machine learning methods in the prediction of metabolic pathways and our proposed HFGAT method performed better than the GCN-based method. Moreover, HFGAT achieved higher [Formula: see text] scores on 8 of 11 classes than the GCN-based method. CONCLUSIONS: Our proposed HFGAT makes use of both the global and local information of the compounds to predict their metabolic pathway categories and has achieved a significant performance. Compared with the GCN model, the introduction of the GAT can help our model pay more attention to substructures of the compound that are useful for the prediction task. The study provided a potential method for drug discovery with all types of metabolic reactions that may be involved in the decomposition and synthesis of pharmaceutical compounds in the organism.
A novel hybrid framework for metabolic pathways prediction based on the graph attention network.
阅读:3
作者:Yang Zhihui, Liu Juan, Shah Hayat Ali, Feng Jing
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2022 | 起止号: | 2022 Sep 28; 23(Suppl 5):329 |
| doi: | 10.1186/s12859-022-04856-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
