Universal droplet propulsion by dynamic surface-charge wetting.

阅读:4
作者:Zhou Yifan, Wu Jiayao, Gao Ge, Zeng Yubin, Liu Sheng, Zheng Huai
Controllable droplet propulsion on solid surfaces plays a crucial role in various technologies. Many actuating methods have been developed; however, there are still some limitations in terms of the introduction of additives, the versatilities of solid surfaces, and the speed of transportation. Herein, we have demonstrated a universal droplet propulsion method based on dynamic surface-charge wetting by depositing oscillating and opposite surface charges on dielectric films with unmodified surfaces. Dynamic surface-charge wetting propels droplets by continuously inducing smaller front contact angles than rear contact angles. This innovative imbalance is built by alternately storing and spreading opposite charges on dielectric films, which results in remarkable electrostatic forces under large gradients and electric fields. The method exhibits excellent droplet manipulation performance characteristics, including high speed (~130 mm/s), high adaptability of droplet volume (1 μL-1 mL), strong handling ability on non-slippery surfaces with large contact angle hysteresis (CAH) (maximum angle of 35°), significant programmability and reconfigurability, and low mass loss. The great application potential of this method has been effectively demonstrated in programmable microreactions, defogging without gravity assistance, and surface cleaning of photovoltaic panels using condensed droplets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。