Diverse extracellular filaments present on the surface of archaea mediate multiple key processes, such as motility, adhesion, and biofilm formation. Although several archaeal filament types have been characterized in considerable detail, many remain understudied, particularly those utilizing noncanonical secretion systems. Here, we describe the Tafi bundling pilus that facilitates biofilm formation in the haloarchaeon Natrinema sp. J7-2. Unlike previously characterized archaeal pili, Tafi is secreted via the twin-arginine translocation (Tat) pathway, which transports fully folded proteins across the cytoplasmic membrane. Structural analysis reveals that although Tafi pili assemble via a canonical strand-donation mechanism, the pilin subunit (TafE) adopts a distinct structural topology that sets it apart from the previously characterized Sec-dependent pilins that form bundling pili in archaea. Sequence analyses show that TafE homologs are also present in thermophilic archaea from different phyla, but Tat-signal sequences are exclusive to pilins of halophilic archaea. Nevertheless, we find that Tat signal peptides in haloarchaeal TafE-like pili were exchanged back to the Sec signal peptides on multiple independent occasions. These findings expand our understanding of the diversity and evolution of archaeal extracellular filaments and highlight the Tat pathway as a route for pilus assembly in halophilic archaea.
Tat-dependent bundling pilus of a halophilic archaeon assembles by a strand donation mechanism and facilitates biofilm formation.
阅读:4
作者:Sonani Ravi R, Liu Ying, Xiang Jialin, Cvirkaite-Krupovic Virginija, Du Shishen, Chen Xiangdong, Krupovic Mart, Egelman Edward H
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 122(31):e2514980122 |
| doi: | 10.1073/pnas.2514980122 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
