The energy metabolism of Balantidium polyvacuolum inhabiting the hindgut of Xenocypris davidi.

阅读:4
作者:Bu Xia-Lian, Zhao Wei-Shan, Li Zhong-Yang, Ma Hong-Wei, Chen Yu-Shun, Li Wen-Xiang, Zou Hong, Li Ming, Wang Gui-Tang
Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。