Image quality assessment (IQA) is a fundamental problem in image processing that aims to measure the objective quality of a distorted image. Traditional full-reference (FR) IQA methods use fixed-size sliding windows to obtain structure information but ignore the variable spatial configuration information. In order to better measure the multi-scale objects, we propose a novel IQA method, named RSEI, based on the perspective of the variable receptive field and information entropy. First, we find that consistence relationship exists between the information fidelity and human visual of individuals. Thus, we reproduce the human visual system (HVS) to semantically divide the image into multiple patches via rectangular-normalized superpixel segmentation. Then the weights of each image patches are adaptively calculated via their information volume. We verify the effectiveness of RSEI by applying it to data from the TID2008 database and denoise algorithms. Experiments show that RSEI outperforms some state-of-the-art IQA algorithms, including visual information fidelity (VIF) and weighted average deep image quality measure (WaDIQaM).
Rectangular-Normalized Superpixel Entropy Index for Image Quality Assessment.
阅读:2
作者:Lu Tao, Wang Jiaming, Zhou Huabing, Jiang Junjun, Ma Jiayi, Wang Zhongyuan
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2018 | 起止号: | 2018 Dec 10; 20(12):947 |
| doi: | 10.3390/e20120947 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
