Online Gradient Descent for Kernel-Based Maximum Correntropy Criterion.

阅读:3
作者:Wang Baobin, Hu Ting
In the framework of statistical learning, we study the online gradient descent algorithm generated by the correntropy-induced losses in Reproducing kernel Hilbert spaces (RKHS). As a generalized correlation measurement, correntropy has been widely applied in practice, owing to its prominent merits on robustness. Although the online gradient descent method is an efficient way to deal with the maximum correntropy criterion (MCC) in non-parameter estimation, there has been no consistency in analysis or rigorous error bounds. We provide a theoretical understanding of the online algorithm for MCC, and show that, with a suitable chosen scaling parameter, its convergence rate can be min-max optimal (up to a logarithmic factor) in the regression analysis. Our results show that the scaling parameter plays an essential role in both robustness and consistency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。