A network-based computational framework to predict and differentiate functions for gene isoforms using exon-level expression data.

阅读:3
作者:Wang Dingjie, Zou Xiufen, Fai Au Kin
MOTIVATION: Alternative splicing makes significant contributions to functional diversity of transcripts and proteins. Many alternatively spliced gene isoforms have been shown to perform specific biological functions under different contexts. In addition to gene-level expression, the advances of high-throughput sequencing offer a chance to estimate isoform-specific exon expression with a high resolution, which is informative for studying splice variants with network analysis. RESULTS: In this study, we propose a novel network-based analysis framework to predict isoform-specific functions from exon-level RNA-Seq data. In particular, based on exon-level expression data, we firstly propose a unified framework, referred to as Iso-Net, to integrate two new mathematical methods (named MINet and RVNet) that infer co-expression networks at different data scenarios. We demonstrate the superior prediction accuracy of Iso-Net over the existing methods for most simulation data, especially in two extreme cases: sample size is very small and exon numbers of two isoforms are quite different. Furthermore, by defining relevant quantitative measures (e.g., Jaccard correlation coefficient) and combining differential co-expression network analysis and GO functional enrichment analysis, a co-expression network analysis framework is developed to predict functions of isoforms and further, to discover their distinct functions within the same gene. We apply Iso-Net to study gene isoforms for several important transcription factors in human myeloid differentiation with the exon-level RNA-Seq data from three different cell lines. AVAILABILITY AND IMPLEMENTATION: Iso-Net is open source and freely available from https://github.com/Dingjie-Wang/Iso-Net.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。