The micromechanical properties (i.e., hardness, elastic modulus, and stress-strain curve) of AlCu films were determined by an instrumented indentation test in this work. For three AlCu films with different thicknesses (i.e., 1 µm, 1.5 µm, and 2 µm), the same critical ratio (h(max)/t) of 0.15 and relative indentation depth range of 0.15-0.5 existed, within which the elastic modulus (i.e., 59 GPa) and nanoindentation hardness (i.e., 0.75 GPa, 0.64 GPa and 0.63 GPa for 1 µm, 1.5 µm and 2 µm films) without pile-up and substrate influence can be determined. The yield strength (i.e., 0.754 GPa, 0.549 GPa and 0.471 GPa for 1 µm, 1.5 µm and 2 µm films) and hardening exponent (i.e., 0.073, 0.131 and 0.150 for 1 µm, 1.5 µm and 2 µm films) of Al-(4 wt.%)Cu films for MEMS were successfully reported for the first time using a nanoindentation reverse method. In dimensional analysis, the ideal representative strain ε(r) was determined to be 0.038. The errors of residual depth h(r) between the simulations and the nanoindentation experiments was less than 5% when the stress-strain curve obtained by the nanoindentation reverse method was used for simulation.
Micromechanical Characterization of AlCu Films for MEMS Using Instrumented Indentation Method.
阅读:7
作者:Hou Dongyang, Ouyang Yuhang, Zhou Zhen, Dong Fang, Liu Sheng
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Oct 5; 17(19):4891 |
| doi: | 10.3390/ma17194891 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
