Significant progress has been made in generating counterfeit images and videos. Forged videos generated by deepfaking have been widely spread and have caused severe societal impacts, which stir up public concern about automatic deepfake detection technology. Recently, many deepfake detection methods based on forged features have been proposed. Among the popular forged features, textural features are widely used. However, most of the current texture-based detection methods extract textures directly from RGB images, ignoring the mature spectral analysis methods. Therefore, this research proposes a deepfake detection network fusing RGB features and textural information extracted by neural networks and signal processing methods, namely, MFF-Net. Specifically, it consists of four key components: (1) a feature extraction module to further extract textural and frequency information using the Gabor convolution and residual attention blocks; (2) a texture enhancement module to zoom into the subtle textural features in shallow layers; (3) an attention module to force the classifier to focus on the forged part; (4) two instances of feature fusion to firstly fuse textural features from the shallow RGB branch and feature extraction module and then to fuse the textural features and semantic information. Moreover, we further introduce a new diversity loss to force the feature extraction module to learn features of different scales and directions. The experimental results show that MFF-Net has excellent generalization and has achieved state-of-the-art performance on various deepfake datasets.
MFF-Net: Deepfake Detection Network Based on Multi-Feature Fusion.
阅读:7
作者:Zhao Lei, Zhang Mingcheng, Ding Hongwei, Cui Xiaohui
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2021 | 起止号: | 2021 Dec 17; 23(12):1692 |
| doi: | 10.3390/e23121692 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
