Effects of Moisture Diffusion on a System-in-Package Module by Moisture-Thermal-Mechanical-Coupled Finite Element Modeling.

阅读:4
作者:Chen Zhiwen, Feng Zheng, Ruan Meng, Xu Guoliang, Liu Li
Epoxy molding compounds (EMCs) are commonly used in electronic products for chip encapsulation, but the moisture absorption of EMC can induce significant reliability challenges. In this study, the effects of hygrothermal conditions and structure parameters on moisture diffusion and the consequent influences (such as moisture content on die surfaces and stress distribution) on a system-in-package module have been systematically investigated by moisture-thermal-mechanical-coupled modeling. Hygroscopic tests were carried out on a new commercial EMC at 60 °C/60% RH and 85 °C/85% RH, followed by evaluations of diffusion coefficients by Fick's law. It was found that the moisture diffusion coefficients and saturation concentrations at 85 °C/85% RH were higher than those at 60 °C/60% RH. From the modeling, it was found that the consequent maximum out-of-plane deformation and stress of the module at 85 °C/85% RH were both higher than those at 60 °C/60% RH. Influences of thicknesses of EMC and PCB on the moisture diffusion behavior have also been studied for design optimization. It was found that the maximum moisture concentration on die surfaces and resultant stress increased notably with thinner PCB, whereas the effects of EMC thickness were limited. This can be attributed to the comparison between the thicknesses of EMC and PCB and the shortest existing diffusion path within the module. These findings can provide helpful insights to the design optimization of electronic modules for hygrothermal conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。