Total generalized variation models have recently demonstrated high-quality denoising capacity for single image. In this paper, we present an accurate denoising method for depth map. Our method uses a weighted second-order total generalized variational model for Gaussian noise removal. By fusing an edge indicator function into the regularization term of the second-order total generalized variational model to guide the diffusion of gradients, our method aims to use the first or second derivative to enhance the intensity of the diffusion tensor. We use the first-order primal-dual algorithm to minimize the proposed energy function and achieve high-quality denoising and edge preserving result for depth maps with high -intensity noise. Extensive quantitative and qualitative evaluations in comparison to bench-mark datasets show that the proposed method provides significant higher accuracy and visual improvements than many state-of-the-art denoising algorithms.
Edge-guided second-order total generalized variation for Gaussian noise removal from depth map.
阅读:2
作者:Li Shuaihao, Zhang Bin, Yang Xinfeng, Zhu Weiping
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2020 | 起止号: | 2020 Oct 1; 10(1):16329 |
| doi: | 10.1038/s41598-020-73342-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
