Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides.
A p7 Ion Channel-derived Peptide Inhibits Hepatitis C Virus Infection in Vitro.
阅读:2
作者:Hong Wei, Lang Yange, Li Tian, Zeng Zhengyang, Song Yu, Wu Yingliang, Li Wenxin, Cao Zhijian
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2015 | 起止号: | 2015 Sep 18; 290(38):23254-63 |
| doi: | 10.1074/jbc.M115.662452 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
