Glass substrate, a new type of substrate with excellent mechanical and electrical properties of glass itself, has great potential to become an ideal platform for heterogeneous integration in chiplet systems for high-performance computing applications. The residual stress of the metal layer generated on the glass surface during the electroplating process is one of the major bottlenecks of glass packaging technologies, resulting in glass-metal layer delamination and glass breakage. This paper demonstrated for the first time a method to regulate the residual stress by manipulating the nanotwin directions of the electroplated Cu. The experimental results show that nanotwins with three different directions (non-directional, vertical, and horizontal) can be manipulated by controlling electroplating conditions (concentration of Cl(-) and gelatin, stirring speed). The orientations of non-directional, vertical, and horizontal nanotwinned Cu are non-oriented, 110 and 111, respectively. After electroplating, the 111-oriented nanotwinned Cu has the smallest residual stress (39.7 MPa). Annealing can significantly reduce the residual stress of nanotwinned Cu, which has been attributed to the decrease in the geometric necessity dislocation density. 110-oriented nanotwinned Cu had drastic recrystallization, while 111-oriented nanotwinned Cu and non-oriented nanotwinned Cu had only slight recrystallization. After annealing, the residual stress of 111-nt-Cu remains the lowest (29.1 MPa).
A Study on Regulating the Residual Stress of Electroplated Cu by Manipulating the Nanotwin Directions.
阅读:4
作者:Yang Gangli, Shi Tailong, Chang Liu, Zhu Hongjia, Tong Dongyu, Yang Wending, Li Zeyuan, Li Liyi
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2024 | 起止号: | 2024 Nov 14; 15(11):1370 |
| doi: | 10.3390/mi15111370 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
