The strong adhesion on dry and wet surfaces and the durability of bioinspired hierarchical fibrillar adhesives are critical for their applications. However, the critical design for the strong adhesion normally depends on fine sub-micron structures which could be damaged during repeat usage. Here, we develop a tree frog-inspired gradient composite micropillars array (GP), which not only realizes a 2.3-times dry adhesion and a 5.6-times wet adhesion as compared to the pure polydimethylsiloxane (PDMS) micropillars array (PP), but also shows excellent durability over 200 repeating cycles of attachment/detachment and self-cleaning ability. A GP consists of stiffer tips and softer roots by incorporating gradient dispersed CaCO(3) nanoparticles in PDMS micropillar stalks. The modulus gradient along the micropillar height facilitates the contact formation and enhances the maximum stress during the detaching. The study here provides a new design strategy for robust adhesives for practical applications in the fields of robotics, electronics, medical engineering, etc.
Gradient Micropillar Array Inspired by Tree Frog for Robust Adhesion on Dry and Wet Surfaces.
阅读:4
作者:Liu Quan, Meng Fandong, Tan Di, Shi Zhekun, Zhu Bo, Xiao Kangjian, Xue Longjian
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Nov 21; 7(4):209 |
| doi: | 10.3390/biomimetics7040209 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
