The temperature distribution and melt pool size have a great influence on the microstructure and mechanical behavior of metal additive manufacturing process. The numerical method can give relatively accurate results but is time-consuming and, therefore, unsuitable for in-process prediction. Owing to its remarkable capabilities, machine learning methods have been applied to predict melt pool size and temperature distribution. However, the success of traditional data-driven machine learning methods is highly dependent on the amount and quality of the training data, which is not always convenient to access. This article proposes a physics-informed machine learning (PIML) method, which integrates data and physics laws in the training parts, overcoming the problems of low speed and data availability. An artificial neural network constrained by the heat transfer equation and a small amount of labeled data is developed to predict the melt pool size and temperature distribution. Besides, the locally adaptive activation function is utilized to improve the prediction performance. The result shows that the developed PIML model can accurately predict the temperature and melt pool dimension under different scanning speeds with a small amount of labeled data, which shows significant potential in practical application.
Physics-Informed Machine Learning for Accurate Prediction of Temperature and Melt Pool Dimension in Metal Additive Manufacturing.
阅读:7
作者:Jiang Feilong, Xia Min, Hu Yaowu
| 期刊: | 3D Printing and Additive Manufacturing | 影响因子: | 2.100 |
| 时间: | 2024 | 起止号: | 2024 Aug 20; 11(4):e1679-e1689 |
| doi: | 10.1089/3dp.2022.0363 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
