A Foreground-Aware Framework for Local Face Attribute Transfer.

阅读:3
作者:Fu Yuanbin, Ma Jiayi, Guo Xiaojie
In the context of social media, large amounts of headshot photos are taken everyday. Unfortunately, in addition to laborious editing and modification, creating a visually compelling photographic masterpiece for sharing requires advanced professional skills, which are difficult for ordinary Internet users. Though there are many algorithms automatically and globally transferring the style from one image to another, they fail to respect the semantics of the scene and are unable to allow users to merely transfer the attributes of one or two face organs in the foreground region leaving the background region unchanged. To overcome this problem, we developed a novel framework for semantically meaningful local face attribute transfer, which can flexibly transfer the local attribute of a face organ from the reference image to a semantically equivalent organ in the input image, while preserving the background. Our method involves warping the reference photo to match the shape, pose, location, and expression of the input image. The fusion of the warped reference image and input image is then taken as the initialized image for a neural style transfer algorithm. Our method achieves better performance in terms of inception score (3.81) and Fréchet inception distance (80.31), which is about 10% higher than those of competitors, indicating that our framework is capable of producing high-quality and photorealistic attribute transfer results. Both theoretical findings and experimental results are provided to demonstrate the efficacy of the proposed framework, reveal its superiority over other state-of-the-art alternatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。