With the development of synchrotron radiation sources and high-frame-rate detectors, the amount of experimental data collected at synchrotron radiation beamlines has increased exponentially. As a result, data processing for synchrotron radiation experiments has entered the era of big data. It is becoming increasingly important for beamlines to have the capability to process large-scale data in parallel to keep up with the rapid growth of data. Currently, there is no set of data processing solutions based on the big data technology framework for beamlines. Apache Hadoop is a widely used distributed system architecture for solving the problem of massive data storage and computation. This paper presents a set of distributed data processing schemes for beamlines with experimental data using Hadoop. The Hadoop Distributed File System is utilized as the distributed file storage system, and Hadoop YARN serves as the resource scheduler for the distributed computing cluster. A distributed data processing pipeline that can carry out massively parallel computation is designed and developed using Hadoop Spark. The entire data processing platform adopts a distributed microservice architecture, which makes the system easy to expand, reduces module coupling and improves reliability.
A distributed data processing scheme based on Hadoop for synchrotron radiation experiments.
阅读:14
作者:Zhang Ding, Dai Ze Yi, Sun Xue Ping, Wu Xue Ting, Li Hui, Tang Lin, He Jian Hua
| 期刊: | Journal of Synchrotron Radiation | 影响因子: | 3.000 |
| 时间: | 2024 | 起止号: | 2024 May 1; 31(Pt 3):635-645 |
| doi: | 10.1107/S1600577524002637 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
