Discussion on the Gradation and Interface Effects on the Dynamic Mechanical Behaviors of Hydraulic Concrete Based on Meso-Mechanical Simulation.

阅读:5
作者:Wang Chao, Zhou Xinyu, Deng Zhaopeng, Wang Xiaohua, Zhang Sherong, Wang Gaohui, Wei Peiyong
Hydraulic concrete is quite different from normal concrete in the terms of aggregate gradation and construction-induced interfaces. To explore their influences on the dynamic mechanical behaviors of hydraulic concrete, several mesoscale numerical models with different aggregate gradations and interfaces were established and subjected to dynamic compressive or tensile loadings. The results show that aggregate gradation significantly affected hydraulic concrete failure patterns under dynamic loads, but interface effects were less obvious, and stressing uniformity improved with an increasing loading rate. The dynamic compressive and tensile strengths of hydraulic concrete showed a strain rate effect independent of gradation, but decreased with larger coarse aggregates, especially at higher rates. Weak-bonding interfaces significantly reduced strength at low loading rates, with a more pronounced effect on tensile strength than compressive strength. The results of this study provide a theoretical basis for the application of hydraulic concrete containing large-size aggregates in practical engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。