Optical logic operation via plasmon-exciton interconversion in 2D semiconductors.

阅读:3
作者:Kim Jung Ho, Lee Jubok, Kim Hyun, Yun Seok Joon, Kim Jeongyong, Lee Hyun Seok, Lee Young Hee
Nanophotonic devices manipulating light for high-speed computing are a counterpart of speed-limited electronic circuits. Although plasmonic circuits are a promising platform for subwavelength miniaturization, the logic-operation principle is still limited to mimicking those of photonic waveguides using phase shifts, polarization, interference, and resonance. Meanwhile, reconfigurable interconversion between exciton and plasmon engender emerging applications like exciton transistors and multiplexers, exciton amplifiers, chiral valleytronics, and nonlinear excitonics. Here, we propose optical logic principles realized by exciton-plasmon interconversion in Ag-nanowires (NW) overlapped on transition metal dichalcogenides (TMDs) monolayers. Excitons generated from TMDs couple to the Ag-NW plasmons, eventually collected as output signals at the Ag-NW end. Using two lasers, we demonstrate AND gate by modulating single excitons in Ag-NW on MoS(2) and a half-adder by modulating dual excitons in lateral WSe(2) and WS(2). Moreover, a 4-to-2 binary encoder is realized in partially overlapped MoSe(2) and MoS(2) using four-terminal laser inputs. Our results represent great advances in communication processing for optical photonics integrable with subwavelength architectures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。