Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).
EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.
阅读:3
作者:Cheng Zhuoling, Bu Xuekui, Wang Qingnan, Yang Tao, Tu Jihui
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 28; 14(1):31319 |
| doi: | 10.1038/s41598-024-82705-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
