Bis(7)-tacrine protects retinal ganglion cells against excitotoxicity via NMDA receptor inhibition.

阅读:3
作者:Zhang Zu-Hai, Liu Yu-Wei, Jiang Fa-Gang, Tian Xiang, Zhu Yan-Hua, Li Jing-Bo, Wang Qi, Fang Jia-Hua
AIM: To investigate whether bis(7)-tacrine, a multifunctional drug, inhibits N-methyl-D-aspartate (NMDA) -activated current in retinal ganglion cells(RGC) and provides neuroprotection against retinal cell damage. METHODS: Purified RGC cultures were obtained from retinas of 1-3 days old Sprague-Dawley(SD) rats, following a two-step immunopanning procedure. After 7 days of cultivation, the inhibition of NMDA-activated current by bis(7)-tacrine was measured by using patch-clamp recording techniques. In animal experiments, RGCs were damaged after intravitreal injection of NMDA (5µL, 40nmol) in adult rats. Bis(7)-tacrine(0.05, 0.1, 0.2mg/kg) or memantine(20mg/kg) was intraperitoneal administered to the rats fifteen minutes before intravitreally injection of NMDA. RGC damage was analyzed by histologic techniques, TUNEL and retrograde labeling techniques. RESULTS: Whole-cell patch-clamp recordings demonstrated that NMDA (30µmol/L) resulted in approximately -50 pA inward currents that were blocked by bis(7)-tacrine(1µmol/L). Histological examination and retrograde labeling analysis revealed that bis(7)-tacrine induced a significant neuroprotective effect against NMDA-induced cell damage 7 days after NMDA injection. TUNEL staining showed that pretreatment with bis(7)-tacrine was effective in ameliorating NMDA-induced apoptotic cell loss in the retinal ganglion cell layer 18 hours after injection. CONCLUSION: Bis(7)-tacrine possesses remarkable neuroprotective activities against retinal excitotoxicity through inhibition of NMDA receptors.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。