The widespread environmental presence of triclosan (TC), a common antimicrobial agent, has raised concerns about its potential metabolic and neurological effects, particularly in susceptible populations such as individuals with diabetes. This study investigated the neuronal effects of TC in streptozotocin (STZ)-induced diabetic zebrafish larvae using network pharmacology, toxicity assays, and gene expression analysis. Network pharmacology identified 99 overlapping diabetes-related targets, with KEGG analysis implicating AGE-RAGE signaling and cholinergic synapse pathways in diabetic and neuronal complications. Acute toxicity testing revealed that TC and STZ co-exposure caused developmental abnormalities, including pericardial edema, and reduced survival (48%) compared to TC (76%) or STZ (68%) alone. Oxidative stress assays demonstrated synergistic reactive oxygen species elevation in the TCâ+âSTZ group, supported by upregulated antioxidant enzymes and glutathione-related genes. Neuronal toxicity assessments showed reduced acetylcholinesterase (AChE) activity and impaired locomotor behavior in diabetic larvae exposed to TC, indicating disrupted cholinergic signaling and cognitive dysfunction. Behavioral analyses confirmed hypoactivity and erratic swimming patterns, aligning with oxidative stress and neuroinflammation. These findings suggest that TC exacerbates diabetes-associated hyperglycemia, oxidative stress, and neurotoxicity, with synergistic effects under diabetic conditions. The study highlights the need for diabetes-specific therapeutic strategies, such as antioxidant and neuroprotective interventions, and stricter safety guidelines for TC use in diabetic populations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-025-04352-z.
Triclosan promotes neurotoxicity in diabetic conditions: an in vivo molecular assessment using zebrafish model.
阅读:4
作者:Dakshitha Sankar, Ghimouz Rym, Murugan Raghul, Marunganathan Vanitha, Subramanian Raghunandhakumar, Roy Anitha, Guru Ajay, Arockiaraj Jesu
| 期刊: | 3 Biotech | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jun;15(6):169 |
| doi: | 10.1007/s13205-025-04352-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
