A Platform Integrating Biophysical and Biochemical Stimuli to Enhance Differentiation and Maturation of Cardiomyocyte Subtypes Derived from Human Induced Pluripotent Stem Cells.

阅读:4
作者:Feng Zhonggang, Sawada Kota, Ando Iori, Yoshinari Riku, Sato Daisuke, Kosawada Tadashi
To enhance the differentiation and maturation of cardiomyocytes derived from human induced pluripotent stem cells, we developed a bioreactor system that simultaneously imposes biophysical and biochemical stimuli on these committed cardiomyocytes. The cells were cultured within biohydrogels composed of the extracellular matrix extracted from goat ventricles and purchased rat-origin collagen, which were housed in the elastic PDMS culture chambers of the bioreactor. Elastic and flexible electrodes composed of PEDOT/PSS, latex, and graphene flakes were embedded in the hydrogels and chamber walls, allowing cyclic stretch and electrical pulses to be simultaneously and coordinately applied to the cultured cells. Furthermore, a dynamic analysis method employing the transverse forced oscillation theory of a cantilever was used to analyze and discriminate the subtype-specific beating behavior of the cardiomyocytes. It was found that myosin light chain 2v (MLC2v), a ventricular cell marker, was primarily upregulated in cells aggregated on the (+) electrode side, while cardiomyocytes with faint MLC2v but strong cardiac troponin T (cTNT) expression aggregated at the ground electrode (GND) side. mRNA analysis using rtPCR and the gel beating dynamics further suggested a subtype deviation on the different electrode sides. This study demonstrated the potential of our bioreactor system in enhancing cardiac differentiation and maturation, and it showed an intriguing phenomenon of cardiomyocyte subtype aggregation on different electrodes, which may be developed into a new method to enhance the maturation and separation of cardiomyocyte subtypes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。