Atomic Adsorption Energies Prediction on Bimetallic Transition Metal Surfaces Using an Interpretable Machine Learning-Accelerated Density Functional Theory Approach.

阅读:18
作者:Tomacruz Jan Goran T, Castro Michael T, Remolona Miguel Francisco M, Padama Allan Abraham B, Ocon Joey D
In this study, we identified features with the largest contributions and property trends in predicting the adsorption energies of carbon, hydrogen, and oxygen adsorbates on transition metal (TM) surfaces by performing Density Functional Theory (DFT)-based calculations and Machine Learning (ML) regression models. From 26 monometallic and 400 bimetallic fcc(111) TM surfaces obtained from Catalysis-hub.org, three datasets consisting of fourteen elemental, electronic, and structural properties were generated using DFT calculations, site calculations, and online databases. The number of features was reduced using feature selection and then finely-tuned random forest regression (RFR), gaussian process regression (GPR), and artificial neural network (ANN) algorithms were implemented for adsorption energy prediction. Finally, model-agnostic interpretation methods such as permutation feature importance (PFI) and shapely additive explanations (SHAP) provided rankings of feature contributions and directional trends. For all datasets, RFR and GPR demonstrated the highest prediction accuracies. In addition, interpretation methods demonstrated that the largest contributing features and directional trends in the regression models were consistent with structure-property-performance relationships of TMs like the d-band model, the Friedel model, and higher-fold adsorption sites. Overall, this interpretable ML-DFT approach can be applied to TMs and their derivatives for atomic adsorption energy prediction and model explainability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。