Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis.

阅读:5
作者:Sakamoto Kanta, Van Veen H W, Saito Hiromi, Kobayashi Hiroshi, Konings Wil N
The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 microM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N'-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the alpha- and beta-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。