In this study, we investigate a nonlinear diffusion process in which particles stochastically reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical and numerical calculations to obtain and interpret the probability distribution of the position of the particles and the mean square displacement. These results are further compared and shown to agree with the results of numerical simulations. Our findings show that a system of this kind exhibits non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and stationary states that simultaneously depend on the nonlinearity and resetting rate.
Results for Nonlinear Diffusion Equations with Stochastic Resetting.
阅读:4
作者:Lenzi Ervin K, Zola Rafael S, Rosseto Michely P, Mendes Renio S, Ribeiro Haroldo V, Silva Luciano R da, Evangelista Luiz R
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2023 | 起止号: | 2023 Dec 12; 25(12):1647 |
| doi: | 10.3390/e25121647 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
