Co-culture of functionally enriched cancer stem-like cells and cancer-associated fibroblasts for single-cell whole transcriptome analysis.

阅读:5
作者:Chen Yu-Chih, Jung Seungwon, Zhang Zhixiong, Wicha Max S, Yoon Euisik
Considerable evidence suggests that breast cancer development and metastasis are driven by cancer stem-like cells (CSCs). Due to their unique role in tumor initiation, the interaction between CSCs and stromal cells is especially critical. In this work, we developed a platform to reliably isolate single cells in suspension and grow single-cell-derived spheres for functional enrichment of CSCs. The platform also allows adherent culture of stromal cells for cancer-stromal interaction. As a proof of concept, we grew SUM149 breast cancer cells and successfully formed single-cell-derived spheres. Cancer-associated fibroblasts (CAFs) as stromal cells were found to significantly enhance the formation and growth of cancer spheres, indicating elevated tumor-initiation potential. After on-chip culture for 14 days, we retrieved single-cell derived spheres with and without CAF co-culture for single-cell transcriptome sequencing. Whole transcriptome analysis highlights that CAF co-culture can boost cancer stemness especially ALDHhigh CSCs and alter epithelial/mesenchymal status. Single-cell resolution allows identification of individual CSCs and investigation of cancer cellular heterogeneity. Incorporating whole transcriptome sequencing data with public patient database, we discovered novel genes associated with cancer-CAF interaction and critical to patient survival. The preliminary works demonstrated a reliable platform for enrichment of CSCs and studies of cancer-stromal interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。