The use of Hermite functions to describe pair distribution functions (PDFs) from total scattering data was previously proposed by Krylov & Vvedenskii [J. Non-Cryst. Solids (1995), 192-193, 683-687]. Hermite functions have a suitable form for describing both the total scattering data and the PDF, and have the useful feature that they are eigenfunctions of the Fourier transform operation. We demonstrate that, by fitting Hermite functions to total scattering data, it is possible to take into account the effects of experimental resolution when deriving the PDF from the scattering data. This is particularly advantageous for neutron time-of-flight data, where different banks of detectors have different resolution functions and the resolution widths vary with the size of the scattering vector. A number of technical points are discussed and illustrated using examples of synthetic data, including both amorphous and crystalline materials. These include a solution to the problem of handling the sharp Bragg peaks, and how to scale the scattering function and PDF to match the scale of the Hermite functions. A number of examples using real scattering data, both synchrotron X-ray and spallation neutron data, are also shown. To account for uncertainties in the levels of the scattering functions, we have modified a method of Billinge & Farrow [J. Phys. Condens. Matter (2013), 25, 454202] to remove backgrounds by fitting with low-order orthogonal (Chebyshev) functions.
Accounting for instrument resolution in the pair distribution functions obtained from total scattering data using Hermite functions.
阅读:4
作者:Wang Shaojie, Gao Min, Qin Yinze, Zhang Sijie, Tan Lei, Dove Martin T
| 期刊: | Journal of Applied Crystallography | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 22; 58(Pt 4):1269-1287 |
| doi: | 10.1107/S1600576725004340 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
