Transparent and Flexible Hierarchical Porous Structure of Polyvinyl Alcohol Aerogel: A Microstructure Study.

阅读:4
作者:Li Xiaoli, Zhang Xuguang, Zhang Hexiang, Sun Xiao, Mu Ying, Barrett Thomas, Doyle Conor, Minus Marilyn L, Zheng Yi
Aerogels have gained increasing attention due to their unique properties since their introduction in 1932. Silica aerogel, one of the earliest and most advanced types, is known for its high transparency and excellent thermal insulation. However, its internal pearl-like structure makes it extremely brittle, which limits its practical applications. To address this, through multiple refinements in formulation and production techniques, we developed a novel Polyvinyl Alcohol (PVA) aerogel using an innovative one-step standing method. This method significantly reduces the gelling time compared to the freeze-thaw method and eliminates the need for refrigeration, making it a more environmentally friendly and sustainable process. The resulting one-step standing PVA aerogel features a hierarchical porous structure, remarkable transparency, improved strength, and enhanced thermal insulation. Mechanical tests demonstrated that the PVA aerogel produced by the one-step standing method exhibited a significantly higher Young's modulus of 4.2596 MPa, surpassing that of silica, copper nanowire (Cu NM), and graphene aerogels. Additional tests, including transmittance and thermal analysis, further confirmed that the one-step standing PVA aerogel excels in both transparency and thermal insulation. This combination of improved mechanical performance and light transmission opens novel potential applications, such as drug delivery systems, where the aerogel's pore structure can store drugs while maintaining strength and transparency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。