Epileptic seizure is the common neurological disorder, which is generally identified by electroencephalogram (EEG) signals. In this paper, a new feature extraction methodology based on optimum allocation sampling (OAS) and Teager energy operator (TEO) is proposed for detection of seizure EEG signals. The OAS scheme selects the finite length homogeneous sequence from non-homogeneous recorded EEG signal. The trend of selected sequence by OAS is still non-linear, which is analyzed by non-linear operator TEO. The TEO convert non-linear but homogenous EEG sequence into amplitude-frequency modulated (AM-FM) components. The statistical measures of AM-FM components used as input features to least squares support vector machine classifier for classification of seizure and seizure-free EEG signals. The proposed methodology is evaluated on a benchmark epileptic seizure EEG database. The experimental results demonstrate that the proposed scheme has capability to effectively distinguish seizure and seizure-free EEG signals.
An optimum allocation sampling based feature extraction scheme for distinguishing seizure and seizure-free EEG signals.
阅读:3
作者:Taran Sachin, Bajaj Varun, Siuly Siuly
| 期刊: | Health Information Science and Systems | 影响因子: | 3.400 |
| 时间: | 2017 | 起止号: | 2017 Oct 27; 5(1):7 |
| doi: | 10.1007/s13755-017-0028-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
