Imaging the stability of chronic electrical microstimulation using electrodes coated with PEDOT/CNT and iridium oxide.

阅读:8
作者:Zheng Xin Sally, Yang Qianru, Vazquez Alberto, Cui Xinyan Tracy
Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time. We observed dynamic changes in stimulation stability over time and a significant advantage in energy efficiency using PC coated electrodes over IrOx coated electrodes. In a subset of mice, we observed abnormal ictal cortical responses or cortical spreading depression using stimulation parameters commonly used in intracortical stimulation applications, suggesting the need to investigate the potential neuronal damage and redefine the stimulation safety limit. This study not only revealed the dynamic changes in stimulation efficiency after implantation but also reiterates the potential for PC as a high-efficiency material in chronic neuromodulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。