Intrusion detection in metaverse environment internet of things systems by metaheuristics tuned two level framework.

阅读:3
作者:Antonijevic Milos, Zivkovic Miodrag, Djuric Jovicic Milica, Nikolic Bosko, Perisic Jasmina, Milovanovic Marina, Jovanovic Luka, Abdel-Salam Mahmoud, Bacanin Nebojsa
Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture's efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model's decision-making process, supporting future data collection efforts and enhancing security of these systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。