Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels.

阅读:3
作者:Adamson Roger H, Sarai Rupinder K, Altangerel Ariungerel, Thirkill Twanda L, Clark Joyce F, Curry Fitz-Roy E
AIMS: Although several cultured endothelial cell studies indicate that sphingosine-1-phosphate (S1P), via GTPase Rac1 activation, enhances endothelial barriers, very few in situ studies have been published. We aimed to further investigate the mechanisms whereby S1P modulates both baseline and increased permeability in intact microvessels. METHODS AND RESULTS: We measured attenuation by S1P of platelet-activating factor (PAF)- or bradykinin (Bk)-induced hydraulic conductivity (L(p)) increase in mesenteric microvessels of anaesthetized rats. S1P alone (1-5 µM) attenuated by 70% the acute L(p) increase due to PAF or Bk. Immunofluorescence methods in the same vessels under identical experimental conditions showed that Bk or PAF stimulated the loss of peripheral endothelial cortactin and rearrangement of VE-cadherin and occludin. Our results are the first to show in intact vessels that S1P pre-treatment inhibited rearrangement of VE-cadherin and occludin induced by PAF or Bk and preserved peripheral cortactin. S1P (1-5 µM, 30 min) did not increase baseline L(p). However, 10 µM S1P (60 min) increased L(p) two-fold. CONCLUSION: Our results conform to the hypothesis that S1P inhibits acute permeability increase in association with enhanced stabilization of peripheral endothelial adhesion proteins. These results support the idea that S1P can be useful to attenuate inflammation by enhancing endothelial adhesion through activation of Rac-dependent pathways.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。