FPAW from Trachinotus ovatus Attenuates Potassium-Oxonate-Induced Hyperuricemia in Mice via Xanthine Oxidase Inhibition and Gut Microbiota Modulation: Molecular Insights and In Vivo Efficacy.

阅读:3
作者:Xiang Huan, Sun-Waterhouse Dongxiao, Hu Xiao, Hou Mengfan, Chen Shengjun, Wu Yanyan, Zhao Yongqiang, Wang Yueqi
Background: Hyperuricemia (HUA) is a widespread metabolic disorder that arises from disruptions in purine metabolism, impaired kidney function, or both conditions. FPAW (Phe-Pro-Ala-Trp) is a novel peptide identified from Trachinotus ovatus with great XOD (xanthine oxidase) inhibitory activity (IC(50) = 3.81 mM), which can be developed as a potential active ingredient to relieve hyperuricemia. However, it remains unclear whether FPAW alleviates HUA in vivo or not. Methods: In this study, potassium-oxonate-induced hyperuricemic mice were used to evaluate the in vivo anti-hyperuricemic activity of FPAW. Some physiological parameters, such as serum uric acid (SUA), serum creatinine (SCR), blood urea nitrogen (BUN), and the activity of XOD and ADA (adenosine deaminase) in the liver were determined to evaluate the effect of reduced uric acid. The modulations in the gut microbiota and its metabolites (SCFAs) were analyzed by sequencing the V3-V4 region of the 16S rRNA gene and GC-MS in different fecal samples. Molecular docking was used to predict the interactions between the enzymes and FPAW. Results: The results showed that FPAW reduced the levels of serum uric acid, serum creatinine, and blood urea nitrogen, while also suppressing the activity of XOD in the livers of HUA mice. Moreover, the FPAW treatment alleviated gut microbiota dysfunction and increased the production of short-chain fatty acids to protect normal intestinal function and health of the host. Molecular docking simulations revealed that FPAW inhibited XOD activity by entering the hydrophobic channel and interacting with amino acid residues on the surface via hydrogen bonding and hydrophobic interactions. Conclusions: This study provides new candidates for the development of hypouricemic drugs. FPAW exhibited great potential to relieve hyperuricemia of mice induced by diet in the animal experiment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。