scDTL: enhancing single-cell RNA-seq imputation through deep transfer learning with bulk cell information.

阅读:6
作者:Zhao Liuyang, Jiang Landu, Xie Yufeng, Huang JianHao, Xie Haoran, Tian Jun, Zhang Dian
The increasing single-cell RNA sequencing (scRNA-seq) data enable researchers to explore cellular heterogeneity and gene expression profiles, offering a high-resolution view of the transcriptome at the single-cell level. However, the dropout events, which are often present in scRNA-seq data, remaining challenges for downstream analysis. Although a number of studies have been developed to recover single-cell expression profiles, their performance may be hindered due to not fully exploring the inherent relations between genes. To address the issue, we propose scDTL, a deep transfer learning based approach for scRNA-seq data imputation by harnessing the bulk RNA-sequencing information. We firstly employ a denoising autoencoder trained on bulk RNA-seq data as the initial imputation model, and then leverage a domain adaptation framework that transfers the knowledge learned by the bulk imputation model to scRNA-seq learning task. In addition, scDTL employs a parallel operation with a 1D U-Net denoising model to provide gene representations of varying granularity, capturing both coarse and fine features of the scRNA-seq data. Finally, we utilize a cross-channel attention mechanism to fuse the features learned from the transferred bulk imputation model and U-Net model. In the evaluation, we conduct extensive experiments to demonstrate that scDTL could outperform other state-of-the-art methods in the quantitative comparison and downstream analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。