Overcoming hypoxia-induced breast cancer drug resistance: a novel strategy using hollow gold-platinum bimetallic nanoshells.

阅读:7
作者:Zhang Lian-Ying, Chen Xiao-Tong, Li Rong-Tian, Meng Wei, Huang Guo-Qin, Chen Yong-Jian, Ge Feng-Jun, Zhang Qun, Quan Yu-Jun, Zhang Cai-Tao, Liu Yi-Fei, Chen Ming, Chen Jin-Xiang
Breast cancer (BC) is a significant cause of cancer-related deaths among women worldwide. Hypoxia, a common feature of solid tumor, is associated with drug resistance and a poor prognosis in BC. In this study, we present a strategy to overcome hypoxia-induced chemotherapy tolerance in BC. Specifically, we synthesized a hollow gold (Au)-platinum (Pt) bimetallic nanoshell for the first time, which acted as a drug delivery system (DDS) for doxorubicin (DOX). The photothermal effect, induced by the surface plasmon resonance (SPR) from the Au-Pt shell under near infrared-II (NIR-II) laser irradiation, not only directly causes tumor cell death through photothermal therapy (PTT), but also significantly enhances the catalase-like activity between Pt nanoparticles and endogenous H(2)O(2). This, subsequently, results in a heightened yield of O(2), which further facilitates the release of DOX. This process alleviates tumor hypoxia and down-regulating hypoxia-inducible factor-1α (HIF-1α), multidrug resistance gene 1 (MDR1), and P-glycoprotein (P-gp), which can reverse drug resistance and achieve more effective DOX chemotherapy effects. Significantly, the increased availability of oxygen further re-polarizes immunosuppressive M2 macrophages into antitumor M1 macrophages. This study presents a novel strategy to tackle tumor proliferation and enhance tumor response to chemotherapy, offering hope for reversing in drug resistance in cancerous lesions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。