Differentially sensitive neuronal subpopulations in the central nervous system and the formation of hindbrain heterotopias in ethanol-exposed zebrafish

中枢神经系统中差异敏感的神经元亚群和乙醇暴露斑马鱼后脑异位的形成

阅读:5
作者:Desire M Buckley, Alfire Sidik, Ranjeet D Kar, Johann K Eberhart

Background

A cardinal feature of prenatal ethanol exposure is CNS damage, resulting in a continuum of neurological and behavioral impairments that are described by the term fetal alcohol spectrum disorders (FASD). FASDs are variable and depend on several factors, including the amount, timing, and duration of prenatal ethanol exposure. To enhance interventions for CNS dysfunction, it is necessary to identify ethanol-sensitive neuronal populations and expand the understanding of factors that modify ethanol teratogenesis.

Conclusions

These data show differentially sensitive CNS neuron subpopulations with susceptibility to low levels of ethanol. In addition, these data reveal the formation of ethanol-induced hindbrain heterotopias.

Methods

To investigate the susceptibility of different neuronal subtypes, we exposed transgenic zebrafish (Danio rerio) to several ethanol concentrations (0.25, 0.5, 1.0, 1.5, or 2.0%), at different hours post fertilization (hpf; 0, 6, or 24 hpf), for various durations (0-24, 0-48, 4-24, 6-24, 6-48,or 24-48 hpf). Following exposure, embryo survival rates were determined, and CNS neurogenesis, differentiation, and patterning were assessed.

Results

Embryo survival rates decrease as ethanol concentrations increase and drastically decline when exposed from 0-24 hpf compared to 4-24 hpf. Abnormal tangential migration of facial motor neurons is observed in isl1:gfp embryos exposed to ethanol concentrations as low as 0.25%, and the formation of IVth ventricle heterotopias are revealed by embryos exposed to ≥1.0% ethanol. Whereas, expression of olig2:dsred and ptf1a:gfp in the cerebellum and spinal cord are largely unaffected. While levels of etv4 mRNA are overtly resistant to ethanol, we observe significant reductions in ptch2 mRNA levels. Conclusions: These data show differentially sensitive CNS neuron subpopulations with susceptibility to low levels of ethanol. In addition, these data reveal the formation of ethanol-induced hindbrain heterotopias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。