Induction of Stress Granules and Developmental Instability of Offspring Phenotype Due to Hypothermia During First Mouse Embryo Cleavage.

阅读:4
作者:Kontsevaya Galina, Romashchenko Alexander, Babochkina Tatyana, Sugatova Dasha, Shevelev Oleg, Sharapova Marina, Moshkin Yuri, Moshkin Mikhail, Gerlinskaya Ludmila
Zygotic genome activation (ZGA) represents one of the most vulnerable periods to environmental perturbations. The objective of this study was to investigate the formation of stress granules in mouse embryos in response to temperature reduction during ZGA, preimplantation embryo mortality, and long-term phenotypic outcomes. These outcomes included the evaluation of expression noise in bilateral right/left limbs of offspring as an indicator of developmental instability, behavioral deviation, hippocampal volume, and metabolomics profiling in adult offspring. Exposure to hypothermia during ZGA was associated with an increased number and inter-blastomere variability of stress granules, extended duration of the second embryonic division, and elevated embryonic mortality during the second and third cleavage stages. The embryonic response to hypothermic stress correlated with phenotypic traits indicative of increased pathology risk. Expression noise, serving as an indicator of developmental instability, was reduced in adult offspring derived from two-cell embryos incubated at 35 °C compared to those at 37 °C, while showing no significant difference relative to the control group. These results suggest that embryos surviving hypothermic exposure (35 °C) possess enhanced resilience to the adverse effects commonly associated with embryo transfer procedures. Furthermore, increased hippocampal volume and augmented auditory startle reflex observed in offspring that endured hypothermia during ZGA imply reduced risks of cognitive-related pathologies and reduced risks of pathologies associated with cognitive functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。