Optimization of Density Peak Clustering Algorithm Based on Improved Black Widow Algorithm.

阅读:6
作者:Huang Huajuan, Wu Hao, Wei Xiuxi, Zhou Yongquan
Clustering is an unsupervised learning method. Density Peak Clustering (DPC), a density-based algorithm, intuitively determines the number of clusters and identifies clusters of arbitrary shapes. However, it cannot function effectively without the correct parameter, referred to as the cutoff distance (d(c)). The traditional DPC algorithm exhibits noticeable shortcomings in the initial setting of d(c) when confronted with different datasets, necessitating manual readjustment. To solve this defect, we propose a new algorithm where we integrate DPC with the Black Widow Optimization Algorithm (BWOA), named Black Widow Density Peaks Clustering (BWDPC), to automatically optimize d(c) for maximizing accuracy, achieving automatic determination of d(c). In the experiment, BWDPC is used to compare with three other algorithms on six synthetic data and six University of California Irvine (UCI) datasets. The results demonstrate that the proposed BWDPC algorithm more accurately identifies density peak points (cluster centers). Moreover, BWDPC achieves superior clustering results. Therefore, BWDPC represents an effective improvement over DPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。